

Pattern and Spoiled Pattern Detection through an
Information Retrieval Approach

Nadia Bouassida

Institut Supérieur d’Informatique et de Multimédia
Université de Sfax, Tunisie

Email: Nadia.Bouassida @isimsf.rnu.tn

Hanêne Ben-Abdallah
 Faculté des Sciences Economiques et de Gestion

Université de Sfax, Tunisie
Email:Hanene.BenAbdallah@fsegs.rnu.tn

Abstract—Design patterns provide for a higher software
quality and a reduced development cost. However, to reach
these benefits, designers are expected to have a good
understanding and experience with design patterns, which is
not evident to acquire. Another way to benefit from design
patterns is by assisting designers in their
detection/identification within a given design in order to
improve it.

Since the exact structural instantiation of a pattern is less
frequent to find within a design, the identification process
should account for variations of the design with respect to
the pattern. It assists the designer by showing the pattern
elements in terms of the design which can be validated with
respect to the classes, attributes, methods and relations of
the pattern: the designer can add/remove some elements
from the design in order to ensure a good instantiation of
the identified pattern. However, not all structural
variations of a pattern are tolerated; in fact, some variations
may result in non-optimal instantiations of the pattern,
a.k.a. spoiled patterns. In this case, the identification
process can assist the designer by proposing corrections for
an acceptable pattern instantiation.

Within this design context, we propose a method that
identifies design patterns and spoiled patterns through an
XML document retrieval approach. This latter provides for
the possibility of tolerating structural variations between the
design and the searched pattern. In addition, our pattern
identification method can be parameterized in order to
delimit the degree of acceptable variations.

Index Terms— Design pattern identification, pattern
instantiation, XML document retrieval.

I. INTRODUCTION
Design patterns [9] are generic solutions for often

occurring problems. Being proven solutions, proposed
by experts, they promise several reuse benefits, such as
high quality software, faster and lower cost software
development. However, to attain these benefits, a
designer must overcome the difficulties inherent to first
understanding and then applying design patterns. In fact,
even an experienced designer would spend a considerable
time understanding, identifying and instantiating/reusing
design patterns pertinent to his/her applications.

A straight forward way to benefit fully from design
patterns is to assist an inexperienced designer to improve
his/her design by identifying, in the design, instantiations
of design patterns. On the other hand, since exact
instantiations of a design pattern is less frequent (and is
less problematic), an exact pattern identification method
is, therefore, of limited use. Instead, pattern
identification should look for structures that “resemble” a
design pattern. By resembling, we mean structures that
vary from a design pattern by adding/removing some
elements (classes, attributes, methods, relations). The
pattern identification method can, in this case, assist the
designer in restructuring his/her design in conformance
with the pattern found.

However, while tolerating pattern instantiations with
variations, the identification method should watch out for
non-tolerated variations, and in particular spoiled
patterns. A spoiled pattern is a structure that allows to
instantiate inadequate solutions for a given problem,
where requirements are respected but architecture is
improvable [17]. As an example of a spoiled pattern, an
observer pattern where observers are subclasses of the
subject class, a composite pattern where the leaf classes
do not inherit from the composite class but are connected
to the composite by a composition relation.

To offer assistance through pattern identification,
several approaches propose to determine the potential
similarities of the structure, the class names and/or
method names between the design and a given pattern.
These approaches differ mainly in the pattern concepts
they consider (i.e., only the structure, the structure and
the methods) and the degree of structural discordance
they tolerate: exact match [4] or partial match [6], [13].
All methods that tolerate structural discordance between
the design and a pattern treat all pattern elements equally.
However, while some elements can be deleted in a design
resembling a pattern, others representing the essence of
the pattern (its core) should not; otherwise the pattern
would be lost and/or spoiled.

In this paper, we present a new pattern identification
technique that can: 1) be used to identify the structure,
class names and participant roles of the pattern, 2)

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010 167

© 2010 ACADEMY PUBLISHER
doi:10.4304/jetwi.2.3.167-175

identify the spoiled patterns, and 3) take into account the
degree of variability of a pattern. In addition, once a
similarity is found, the identified design fragment is
presented with the pattern roles and variability. This
presentation assists the designer in better understanding
the pattern through his/her application and in validating
its instantiation. For this, we propose to use the P-UML
design language [3], a UML profile for patterns.

More specifically, our identification technique reuses
an XML document retrieval approach where the pattern is
seen as the XML query and the design as the XML
document where the query is searched. It relies on the
context resemblance function [11] to compute the
similarity potential of the design structure and the pattern.
One advantage of this approach is that it is applicable to
account for both the structure and methods in the pattern.
A second advantage is that it accommodates design
variability with respect to the pattern structure without
losing the pattern essence or spoiling it.

The remainder of this paper is organized as follows.
Section 2 overviews currently proposed approaches and
tools for pattern and spoiled pattern identification.
Section 3 first summarizes the basic concepts of XML
document retrieval in general and the P-UML design
language. Section 4 presents our approach for pattern
identification and illustrates it with the composite pattern
and a spoiled composite pattern. Section 5 summarizes
the paper and outlines our future work.

II. CURRENT PATTERN IDENTIFICATION
APPROACHES

Several works have been interested in pattern
identification but for different purposes. For reverse
engineering purposes, several proposals addressed the
problem of automating the identification of design
patterns in source code, cf., [10], [7], [15]. For instance,
Lee et al., [10] use a static analysis to collect the
structural aspect of software and a dynamic analysis to
elucidate dynamical aspects of the software during the
program execution such as the message passing between
objects.

For both reengineering and code improvement
purposes, Albin-Amiot et al. [1] present a toolset to help
OO software practitioners design, understand, and re-
engineer a piece of software using design patterns. Their
prototype tool uses a constraint satisfaction technique to
detect patterns within a given source code. It has the
advantage of taking into account refractoring aspects and
identifying distorted versions of the pattern in a source
code. In addition, it can transform the source code so that
it complies with the detected design pattern.

Besides the code, other works extract design patterns
from a design. For example, the work of Tansalis [13]
proposes a design pattern detection methodology based
on similarity scoring between graph vertices. The graphs
of the searched pattern and the examined design are
encoded as matrices. These latter are then used to
compute a similarity matrix. This matrix is calculated
using the similarity scoring algorithm which has been
proposed by Blondel et al. [2] The main drawback of the

similarity scoring approach is the convergence time
which depends on the graph size of the design.

Also within this matrix similarity-based approach,
Dong et al. [5] use a template matching method to
calculate the normalized cross correlation between the
pattern matrix and the matrix representing a design
segment. A normalized cross correlation shows the
degree of similarity between the pattern and the design
segment.

On the other hand, Florijin and Meijers [18] proposed a
tool capable of detecting all pattern instantiations in an
OMT design. The tool implements a graph matching
technique. Once a pattern template is detected, the tool
associates a set of roles to the classes composing the
detected pattern instantiation. This information can assist
the designer in validating the correct instantiation of a
pattern. However, it does not tolerate any discordance
between the design and the pattern.

A second purpose of pattern identification within a
design is to improve the quality of the design. Within
this context, Bergenti and Poggi [19] propose a tool,
called IDEA, to improve UML designs (class and
collaboration diagrams) using automatic pattern
detection. Their method relies on a knowledge base
where each pattern is described in terms of a structure
template and a collaboration template (described as
PROLOG rules). For example, to detect the Composite
pattern, the system searches all triplet classes having the
template structure identical to the composite. Thus, this
method handles only an exact instantiation of the pattern.
When IDEA finds a pattern instance, a set of design
(PROLOG) rules are verified to test if the design could be
improved. Then a set of critiques are proposed as possible
design improvements. It is worth noting that the
critiques/proposed improvements are pattern specific and
they require a high level of understanding of both the
design and the pattern.

The work of El Boussaidi and Mili [7] represents the
design problem the pattern is meant to solve explicitly. It
aims at recognizing occurrences of the modeled problem
solved by a design pattern, which is then transformed
according to the solution proposed by the design pattern.
This work uses a meta model of the pattern problem to
identify its instances in a given design. Once a problem
is detected, it marks the appropriate entities and finally
applies transformations to get the pattern solution. This
work relies on graph modeling and transformation. One
of its limits is that it focuses only on the pattern structure.
However, among the essential constituents of a pattern
(problem and/or solution) is the methods used.

Bouhours et al. [17] propose a detection approach for
“bad smells” in a design that can be remodeled through
the use of design patterns. A bad smell is any symptom
that possibly indicates a design problem. The proposed
approach can identify some spoiled patterns and their
alternative model fragments. It uses a generator of OCL
queries and a specific profile that encodes structural
particularities of spoiled patterns. However, this work
allows only exact matches with the spoiled patterns and
considers only the structural information.

168 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

As summarized in table I, none of the proposed
approaches combines the structural and dynamic aspects
in their pattern identification. Except for Ka-Yee [21],
none of the few works treating the dynamic aspect
describes the behavior in terms of scenarios of ordered
method invocations and tolerates behavioral variability.
In fact, the dynamic aspect treated in the other
approaches is limited to method calls between pairs of
related classes, independently of the overall temporal
behavior.

TABLE I. CURRENT PATTERN IDENTIFICATION APPROACHES

 Technique Type Tolerate
variation Aspect

[11]

Pa
tte

rn
,

pr
ob

le
m

, o
u

sp
oi

le
d

Yes/no static &
dynamic

[1] constraint
satisfaction pa

tte
rn

Yes static

[13]

similarity
scoring
between
graphs

coded as
matrices

pa
tte

rn

Yes

static &
partially
dynamic

(only method
calls)

[5]

template
matching
between
graphs

coded as
matrices

pa
tte

rn

Yes

static &
partially
dynamic

(only method
calls

[7]

Meta-model
of the

problem and
CSP Pa

tte
rn

pr

ob
le

m

Yes static

[17] OCL
queries Sp

oi
le

d
pa

tte
rn

No static

[21]
dynamic

analysis &
CSP pa

tte
rn

yes dynamic

In addition, none of the proposed approaches for

pattern detection can also detect spoiled patterns.
Furthermore, none of these approaches instantiates a
detected pattern within the examined design while
highlighting the pattern variability and the role of each
class in the design. Such information can assist the
designer in understanding the pattern (or spoiled pattern)
and validating its correct instantiation.

III. XML DOCUMENT RETRIEVAL AND PATTERN
NOTATION

Our approach has a two-fold objective. The first
objective is to identify correct and spoiled pattern
instantiations within an application design, while
tolerating certain variability. For this, we adapt an XML
document retrieval technique that we overview in
Subsection A. The second objective is to assist the
designer in understanding and validating the instantiation
of the identified pattern within the examined design. For
this, we propose to use the P-UML notation which we
briefly present in Subsection B.

A. XML document retrieval
XML document retrieval has been treated in the

literature by several researchers. The most complete work
has been proposed by Manning et al., [11]. In this work,
the authors adapt the vector space formalism for XML
retrieval by considering an XML document as an ordered,
labeled tree. Each node of the tree represents an XML
element. The tree is analyzed as a set of paths starting
from the root to a leaf. In addition, each query is
examined as an extended query – that is, there can be an
arbitrary number of intermediate nodes in the document
for any parent-child node pair in the query. Documents
that match the query structure closely by inserting fewer
additional nodes are given more preference.

A simple measure of the similarity of a path cq in a
query Q and a path cd in a document D is the following
context resemblance function [11]:

⎪
⎪
⎩

⎪⎪
⎨

⎧

+

+

=

dcqc

dcqc
cd
qc

dcqcRC

match not does if 0

 matches if
1

1
),(

Where:
- |cq| and |cd| are the number of nodes in the

query path and document path, respectively, and

- cq matches cd if and only if we can transform cq
into cd by inserting additional nodes.

Note that the value of CR(cq, cd) is 1 if the paths cq and cd
in Q and D are identical. On the other hand, the more
nodes separating the paths of Q and D, the less similar
they are considered, i.e., the smaller their context
resemblance value will be.

B . P-UML: a design pattern notation

Several UML-based formalisms for pattern
representation (cf., [8] , [14])) were proposed. To
account for the variability of a pattern, some proposed
languages are able to distinguish the “regular” methods
from the hook and template methods in a pattern, cf., [5]
[12]. These two types of methods encapsulate the pattern
extensibility: template methods define abstract and
generic behavior, while hook methods provide their
implementation. However, none of the proposed
languages both shows the variability and guides potential
instantiations of the pattern and identifies the elements,

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010 169

© 2010 ACADEMY PUBLISHER

the structure and the role played by the elements of the
pattern.

In response to the above shortages, we have proposed a
notation for patterns, called P-UML [3], that is an
extension of the UML class diagram. The extensions
outline the roles played by both the classes as well as the
methods within a design pattern. In addition, they link the
pattern elements, and therefore help in visually
distinguishing between different patterns used in a system
design. Moreover, the extensions identify the pattern hot-
spots and meta-patterns (template and hook methods).
To illustrate the main concepts of the P-UML language,
we will use the Composite pattern (Figure 1). The reader
is referred to [3] for a detailed description of this
language.

CompositeFigure
CompositeFigure()
Handles()
DrawFrame()
GetChild()
RemoveChild()

EllipseFigure
EllipseFigure()
Handles()
DrawFrame()

RectangleFigure
RectangleFigure()
Handles()
DrawFrame()

Figure

{extensible}
Handles()
Draw()
GetChild()
RemoveChild()

 *

Composite :composite
Composite :leaf

Composite :component

{incomplete}

Composite : leaf

{composite :
 operation}

{composite :
operation}

T()

H()

Figure 1. The composite pattern in the P-UML notation

Figure 1 shows an instantiation of the Composite
pattern for an application in the graphical editor domain.
The pattern participant roles (the ellipses) and their
relationships are indicated in the instantiation. In
addition, P-UML identifies the methods that play
essential roles in the pattern: the Draw() method has been
identified as a fundamental method in the composite
pattern. A dashed line joins the hook Draw() and the
template method DrawFrame(). The aggregation relation
which is fundamental in the pattern is drawn with a
highlight. Finally, P-UML delimits the pattern
boundaries, which eliminates any confusion when
multiple patterns are composed.

IV. PATTERN DETECTION TECHNIQUE
To detect patterns within a design, we take into

account that a given pattern may be represented in
various forms that differ from the basic structure without
loosing the essence of the pattern. Thus, an exact pattern
matching approach is insufficient.

On the other hand, the problem of finding an XML

document (query) within a larger document while
tolerating structural variations has been treated within the
information retrieval domain. Several solutions were
proposed to handle the structural differences that may
exist between the query and a retrieved document. These
solutions motivated us to convert design pattern detection
into an XML document retrieval problem. More
specifically, we consider a design pattern as an XML
query and the design as the target XML document where
the pattern is searched. In fact, since we consider the
pattern and the examined design as two class diagrams,
their transformation into XML documents is
straightforward and can be handled by most existing
UML editors. Furthermore, by transforming the pattern
detection problem into an XML document retrieval
problem, our approach can benefit from existing search
engines.

<!ELEMENT classdef (name, inherit*, composition*,
association*,aggregation*, implements*, typdef*, op*)>

<!ELEMENT inherit (type*, incompletetag?) >
<!ELEMENT composition (type*) >
<!ELEMENT aggregation(type*) >
<!ELEMENT typedef (name+, type+) >
<!ELEMENT predcalc (predcalc*, type *) >
<!ELEMENT op (name, returntype+,param*)>
<!ELEMENT param (name+, type +) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT type (#PCDATA) >
<!ELEMENT incompletetag (#PCDATA) >

 Figure 2. DTD extract for the UML class diagram

To illustrate our method, we will focus on the structural
features of the corresponding class diagram: the classes,
generalizations, aggregations, compositions, etc. For
this, we will use the DTD shown in Figure 2 to transform
the pattern and the design into XML documents. Note
that each tree in these XML documents is composed of
class nodes interconnected by relation nodes
(generalization, association, etc). In addition, each path
in a tree contains relation nodes from the same type.

In XML document retrieval in general, the context
resemblance function (CR) is calculated based on an
exact match between the names of the nodes in the query
and the document paths. However, for pattern detection,
the nodes representing the classes are often different in
the pattern from those in the design. Thus, we first need
to calculate the resemblance values for the various
matches between the class nodes in the query (pattern)
and those in the design. Secondly, we need to take into
account: 1) the number of times a given match between
two class nodes is used to calculate CR; and 2) the
importance of each relation in the pattern.

A. Resemblance determination
The resemblance between a pattern and a design starts

by computing the resemblance between each path of the
pattern to all the paths in the design. In this computation,
we assume that the structural variability should be limited
between the pattern and a potential instantiation in the
design. That is, we assume that a design path may differ

170 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

from a pattern path by adding at most N nodes compared
to the longest path of the pattern. The larger the N, the
more scattered the pattern instantiation would be in the
design, which might loose the pattern essence.

To determine the resemblance between a pattern Q and
a document D, we proceed as follows:

1. L := the number of class nodes in the longest path

in Q;
2. N := the maximum number of

intermediate/additional nodes in the design path;
3. For each path Pq in the pattern Q
3.1 For each path Pd in the document D
3.1.1 If Pd and Pq have different types of relations
3.1.2 then CR(Pq , Pd) := 0

else
 //compare Pq with all sub-paths in Pd starting

// from different nodes
3.1.3 For s=1 to | Pd|-1

// tolerate at most w additional nodes
3.1.3.1 For w=1 to min(L+N, | Pd|-1)

 3.1.3.1.1 P’d := Pd [s .. s+w]
3.1.3.1.2 Compute CR(Pq , P’d)
4. Compute the weighed sum of all CR scores for all

the paths and store them in CRMatrix(Q,D);
5. Normalize CRMatrix(Q,D) by dividing each entry

by the number of classes in D

In step 3.1.3, we consider that the match between the
pattern path and the design path may not necessarily start
at the root node; for this we need to consider all possible
sub-paths of the design. These sub-paths start at
different class nodes in Pd. In addition, since the
structural difference between the pattern path and the
design path is limited, then each sub-path can cover at
most L+N class nodes; thus the number of sub-paths to
be considered is reduced. This in turn limits the temporal
complexity of the algorithm. The tolerated maximal
intermediate nodes N can be fixed by the designer.

In step 4, we sum up in CRMatrix the resemblance
scores (i.e., correspondences) between the classes of the
design and the classes of the pattern. This weighted sum
accounts for the importance of the relations in the pattern.
Finally, in step 5, these scores are normalized with
respect the total number of classes in the design; the final
matching results are collected in NormalizedCRMatrix
whose columns are the classes in the pattern and whose
rows are the classes of the design. Now given this
matrix, we can decide upon which correspondence better
represents the pattern instantiation: For each pattern
class, its corresponding design class is the one with the
maximum resemblance score in NormalizedCRMatrix.

On the other hand, given two designs D1and D2, to
decide upon which design better instantiates a pattern P,
we first compute their normalized resemblance matrices.
Secondly, we compute the sum of the normalized
resemblance scores for all the matched pattern classes in
D1and D2; the design with the maximum sum is the one
that better instantiates the pattern.

Note that in the worst instantiation, each pattern class

must be matched to at least one class in the design; thus,
on average, the sum of the normalized resemblance
scores of the matched classes should not be less than the
number of classes in the pattern divided by the number of
classes in the design.

B. Example: detection of the composite pattern

Graphics applications like drawing editors let users
build complex diagrams out of simple components. The
user can group components to form larger components.
For instance, we can define classes for Text and Lines
and classes that act as containers for these classes.
However, when using these classes, the primitive classes
such as Text and Line have to be treated differently from
the container class: This is the composite pattern problem
instantiated in the graphical editor application shown in
Figure 1.

The composite pattern (Figure 3.b) applies to
compose the objects in a tree structure where individual
objects as well as the composed objects behave
uniformly. Composed objects delegate the requests to the
individual leaf objects.

To detect the composite pattern, we have to identify
its structure. Let us try to identify it in the design of
Figure 3.a. The XML corresponding paths are illustrated
in Figure 4.

Table II shows a sample of the resemblance function
scores corresponding to the design and pattern paths of
Figure 4. Recall that some concepts are more essential in
a pattern than others. In the composite pattern, let us
consider that the aggregation relation is twice as
important as the inheritance relation. Thus, when
collecting the CR scores in the resemblance matrix, the
score of the aggregation match is multiplied by two.

The normalized CR matrix identifies the composite
design pattern correctly and indicates that the class A
matches the component class, the class D matches the
composite and consequently the class C matches the Leaf
class. Note that the match score of the class C to Leaf is
equal to the match score of C to composite (0.39);
however, since D has been identified as composite with a
greater matching score (0.725), then C is identified as
Leaf.

A

B

D

Component

Composite

C

Leaf

F

E

a. The design b.The composite design pattern

Figure 3. A sample design (a) and the composite pattern (b)

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010 171

© 2010 ACADEMY PUBLISHER

Furthermore, the sum of the maximum normalized CR
for the nodes of the pattern (2.365) is greater then the
threshold which is equal to 3/6; thus this identification is
acceptable.

Given the above matching, we can represent the
Composite pattern within the design through the P-UML

language as shown in Figure 5. Through this
representation, the designer can better understand the
roles of his/her design classes as indicated in the
identified pattern.

The design paths

 E

d1 d2

inherits

 A

inherits

 B

inherits

 A

inherits

 B

d3

q1 q2

The composite design pattern

inherits

Leaf

 Component

aggregate

Composite

inherits

Composite

q3

inherits

 C

inherits

 D

aggregate

 D

 A

associate

 F

 B

d4

Figure 4. XML document trees for the example of Fig 3.

C

D

B

Composite :composite Composite :leaf

E

A

F

Composite :component

Figure 5. The identified composite pattern with P-UML

TABLE II. SAMPLE CONTEXT RESEMBLANCE SCORES AND NORMALIZED MATRIX

component

inherits

leaf component
inherits

composite component
aggregates

composite

E
inherits

 A
CR(cq1 , cd1) =1

If Component=E Leaf=A
CR(cq1 , cd1) =1

if Component=E Composite=A
0

A
inherits

B
CR(cq1 , cd1) =1

If Component=A Leaf=B
CR(cq1 , cd1) =1

if Component=A Composite=B
0

E
inherits

A
inherits

B
CR(cq1 , cd1) =0.75

If Component=E Leaf=B
CR(cq1 , cd1) =0.75

if Component=E Composite=B
0

A
aggregates

D 0 0
CR(cq2, cd2) =2

if Component=A Composite=D

F
associates

B 0 0 0

172 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

 component composite leaf component composite leaf
 E 5.9 0 0 E 0.983 0 0

 A 7.5 1 1 A 1.25 0 .16 0.16
= pattern) esign,CRMatrix(DNormalized B 4 1.75 1.75 / 6 = B 0.66 0.29 0.29

 C 0 2.35 2.35 C 0 0.39 0.39
 D 0 4.35 2.35 D 0 0.725 0.39
 F 0 0 0 F 0 0 0

C. Detection of the spoiled composite pattern

As we are able to detect design patterns, we are also
able to detect spoiled patterns. An example of a spoiled
composite pattern is illustrated in Figure 6. It shows a
typical composite object structure of recursively
composed graphic objects. The Figure class is
composed of other Figures which could be composed of
lines, texts and rectangles. In this spoiled pattern the
pattern quality rules or the decoupling and extensibility
properties of the pattern are not respected. Moreover, the
fact that Line, Text and Rectangle do not inherit from
Graphic will cause some duplication of code with
excessive use of delegation [17].

A correction of this spoiled pattern is brought by the
composite pattern which defines an abstract class that
represents both primitive and container classes: the class
Graphic shown in Figure 8.

Graphic

+Draw()

Line

+Draw()

Text

+Draw()

rectangle

+Draw()

Figure

+Draw()

Figure 6. A spoiled composite pattern [17]

To detect the spoiled Composite, an abstraction of

the spoiled pattern is necessary. The abstraction is
shown in Figure 7. Now, let us consider the design
fragment illustrated in Figure 9 and determine if it is
similar to the spoiled composite abstraction illustrated in
Figure 7.

Similar to pattern detection, the design is converted
into XML trees as illustrated in a graphical format in
Figure 10. Some of the context similarity function scores
are illustrated in table III and the resulting Normalized
matrix is shown below.

component

+Operation1()

Leaf1

+Operation1()

composite

+Operation1()

Figure 7: An abstraction of a spoiled composite pattern

The normalized CR matrix identifies the spoiled

composite design pattern correctly. Thus, the class
Graphic is identified as the component class, the class
Figure is identified as the composite class. The classes
TextFigure, TriangleFigure and EllipseFigure match the
Leaf class. Note that the match scores of these classes to
Leaf is equal to their match scores to composite (1/6);
however, since the composite has been identified with a
greater matching score (10/6), then they are identified as
Leaf.

Given the above matching, we can substitute the
spoiled Composite pattern with a correct instantiation of
a composite pattern.

Graphic

Draw()
Add(Graphic)
Remove(Graphic)
GetChild(int)

Figure

Draw()
Add(Graphic)
Remove(Graphic)
GetChild(int)

Text

Draw()

Line

Draw()

Figure 8: An example of the composite pattern

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010 173

© 2010 ACADEMY PUBLISHER

Figure 9: a fragment of a design

Graphic

aggregate
aggregate
s

Triangle
Figure

Figure

aggregate
s

Figure

aggregate
s

Ellipse
Figure

inherits

Figure Text
Figure

Figure 10: XML document trees for the spoiled composite pattern

TABLE III. CONTEXT RESEMBLANCE SCORES FOR SPOILED COMPOSITE PATTERN DETECTION

Component

inherits

Composite

Composite
aggregates

Composite

Composite
aggregates

Le
af

Graphic
inherits

 Figure
CR(cq , cd) =1
if Component=Graphic
Composite=Figure

0
0

Figure
aggregates

Figure 0
CR(cq , cd) =1
if Composite=Figure
Composite=Figure

CR(cq , cd)) =1
if Composite=Figure
Leaf=Figure

Figure
aggregates

EllipseFigure 0
CR(cq , cd) =1
if Composite=Figure
Composite= EllipseFigure

CR(cq , cd) =1
if Composite=Figure
Leaf=EllipseFigure

Figure
aggregates

TextFigure 0
CR(cq , cd) =1
if Composite=Figure
Composite=TextFigure

CR(cq , cd) =1
if composite=Figure
Leaf=TextFigure

Figure
aggregates

TriangleFigure 0
CR(cq , cd) =1
if composite=Figure
composite=TriangleFigure

CR(cq , cd) =1
if composite=Figure
 Leaf= TriangleFigure

Figure
asociates

FigureChangeListener 0 0 0

 /6

000

110

110

110

1100

001

 Design) atternPb,CRMatrix(PNormalized

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

geListenerFigureChan

gureTriangleFi

TextFigure

ureEllipseFig

Figure

Graphic

af Leosite CompComponent

Graphic

+Draw()

FigureChangeListener

+FigureChanged()

Figure

+Draw()
+Changed()

EllipseFigure

+Draw()

TriangleFigure

+Draw()

TextFigure

+Draw()

174 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

V. CONCLUSION
 Design patterns ensure an improvement of design

quality, traceability and a better documentation [9].
However, the difficulty of their detection and
instantiation reinforces the need for a technique that
automates these tasks. This paper proposes a new
approach for pattern and spoiled pattern detection and
instantiation.

The proposed approach adapts an XML document
retrieval technique. That is, it considers a design pattern
(or spoiled pattern) as an XML query to be found in an
XML document representing a design. It uses the
context similarity function [11] to determine the most
probable correspondences between the classes of the
design and those in the pattern (or spoiled pattern). It
has the advantage of tolerating certain structural
differences in the design compared to the (spoiled)
pattern; the designer can fix a threshold below which the
differences are un-tolerated. In addition, our approach
can be applied for both structure and method
correspondences. Furthermore, once a (spoiled) pattern
instantiation is detected, the correspondence information
produced by our approach can be exploited to represent
the design fragment with the (spoiled) pattern elements.
This representation assists the designer in understanding
the found (spoiled) pattern within the context of his/her
application. Moreover, it allows him/her to validate
(correct) the instantiation of the (spoiled) pattern.

Our future works deal with three axes. In the first, we
are examining how to add more intelligence in our
assistance for the recognition of pattern problems inside
a design: how to alleviate the search task by adding
priorities. In the second axe, we are seeking to exploit
the information of the collaboration diagrams to best
handle the (spoiled) pattern detection. In the third axe,
we are looking into the formalization of design patterns.
This will provide us with two benefits: 1) precise
definition of patterns, and 2) analysis facilities to
validate a pattern instantiation.

REFERENCES
[1] H. Albin Amiot, P. Cointe, Y. G. Guéhéneuc, "Un meta-

modele pour coupler application et détection des design
patterns", L'objet, N° 8, 2002, pp1-18.

[2] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart,
and P. Van Dooren, "A Measure of Similarity between
Graph Vertices: Applications to Synonym Extraction and
Web Searching", SIAM Review, Vol. 46, N°. 4, 2004, pp.
647-666.

[3] N. Bouassida and H. Ben-Abdallah, "Extending UML to
guide design pattern reuse", Sixth Arab International
Conference On Computer Science Applications, March
2006.

[4] K. Brown, "Design reverse-engineering and automated
design pattern detection in Smalltalk". Technical Report
TR-96-07, University of Illinois at Urbana-Champaign,
1996.

[5] J. Dong, "UML extensions for design pattern
compositions", Journal of object technology, Vol. 1, N°
5, 2005, pp 149-161.

[6] J. Dong , Y. Sun and Y. Zhao, "Design pattern detection
by template matching". SAC'08, Ceara, Brazil, March
16-20, 2008 .

[7] G. El Boussaidi and H.Mili, "Detecting patterns of poor
design solutions by using constraint propagation", In
MODELS, Proceedings of the 11th international
conference on model driven engineering languages and
systems, 2008.

[8] M.F. Fontoura, W. Pree and B. Rumpe, "Extending UML
to improve the representation of design patterns", JOOP,
Vol. 13, N°11, 2001, pp. 12-19.

[9] E. Gamma, R. Helm, R. Johnson and J. Vlissides, 1995,
Design patterns: Elements of reusable Object Oriented
Software, Addisson-Wesley, Reading, MA, 1995.

[10] H. Lee, H. Youn, E. Lee, "A design pattern detection
technique that aids reverse engineering". In the
International Journal of security and applications. Vol 2,
N°1 January, 2008.

[11] C.D. Manning, P. Raghavan and H. Schütze, An
introduction to information retrieval, Cambridge
University Press, England, 2008.

[12] W. Pree, "Meta-patterns: a means for capturing the
essentials of object-oriented designs", Proceedings of the
8th European Conference on Object Oriented
Programming, Bologna, Italy, 1994.

[13] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides and S.
T. Halkidis, "Design pattern detection using similarity
scoring" In IEEE transactions on software engineering,
vol 32, N°11, san franciso,USA,2006.

[14] Y. Sanada and R. Adams, "Representing Design Patterns
and Frameworks in UML-Towards a Comprehensive
Approach", Journal of Object Technology, Vol. 1, N°2,
July-August, 2002.

[15] N. Shi and R.A. Olsson. "Reverse Engineering of
Design Patterns from Java Source Code", Proceedings
21st IEEE International Conference on Automated
Software Engineering, 2006.

[16] XML Metadata Interchange: OMG Document ad/98-07-
03, July 6, 1998

[17] C. Bouhours, H. Leblanc and C. Percebois, "Bad smells
in design and design patterns". In Journal of Object
Technology, Vol 8, N°3, May-June, 2009.

[18] G. Florijin, M. Meijers and P. Van Winsen, "Tool
support for object oriented patterns", In Proceedings of
the European conference on object oriented
programming: ECOOP, 1997.

[19] F. Bergenti and A. Poggi, "Improving UML design
pattern detection", In proceedings of the 12th
international conference on software engineering and
knowledge engineering SEKE, 2000.

[20] N. Bouassida and H. Ben-Abdallah, "Structural and
behavioral detection of design patterns". In: International
Conference on Advanced Software Engineering & Its
Applications (ASEA), December 10-12, Jeju Island,
Korea, LNCS Proceedings, Springer, 2009.

[21] J. Ka-Yee Ng and Y. G. Gueheneuc, "Identification of
behavioural and creational design patterns through
dynamic analysis", Proceedings of the 3rd International
Workshop on Program Comprehension through Dynamic
Analysis (PCODA), October 2007, pp 34-42.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010 175

© 2010 ACADEMY PUBLISHER

